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In [1]:

MAS506 Probability and Statistical
Inference

Lecture 7: Regression 2

import numpy as np
import matplotlib.pyplot as plt

1. Extending to a more general cases of Linear
Regression

1.1 Instead of 4 samples, we have n samples

Modify the X, Y matrices to incorporate all the samples: (x1, ¥1), (X2, ), ..., (Xps Yn)
1 ] REEN
¥ 1 x
| Vn |1 X,

And the optimal coefficients /§ will have the same expression as before (4) with updated X
and Y. Hence still we will have

F=XTx)"'xTy

1.2 Instead of y = fiy + f1x we want:
y = Po+ pi1x + fox*+... +Pux"
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Assuming we still have n data points, relative to the base case, now we need to update all
matrices involved: X, Y and f:

m — —

- 2
i Loxp xp X Po
1 x X2 e XM
y=|"| x-= 2 X5 N b
[ Vn 1 x, x5 - xP] | B |

With these new matrices, the optimal coefficients (estimate of f: f) will still have the same
expression as (4)

F=X"X)""xTy

1.3 Instead of y = fy + f1x we want:
y = Po + prisin(x) + Prcos(x)

Assuming n samples, again updating X, Y and f as follows

V1 [ 1 Sin(x;) Cos(x;) ]
vo| 2] xo 1 Sin.(xz) Cos.(xz) . ﬁ‘;
| Y | 1 Sin(x,) Cos(x,) | P2

Like before, with updated X, Y and f, we still have:
F=XTx)'xTy

1.4: Linear regression in multiple dimensions (Multiple
Linear Regression)
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Suppose we have n samples in d dimensions. Hence each sample has d coordinates. For
th sample is represented as follows

(Xi’ yl) = (xi19 Xi2s o5 Xids yl)
Please note that y; is still 1-dimensional.

instance, i

Now, suppose we wish to fit a hyperplane of the following form in d dimensions. Hence for a
given X = (xy, X, .., Xy) it should be able to predict a y value using the following
equation

y =P+ pix1 + Poxo+...+Paxy4

In order to fit this hyperplane, we will again have a new definition of X, Y and f as follows:

Y1 I xi1 x12 -+ X o
1 x X e X
v - » . x = 21 X2 2d g b
| Vn | 1 Xnl Xn2 Xnd | ﬁd i

And f will again be inferred as:
f=XTx)"'xTy

Higher degree polynomials etc can also be incorporated directly into the model as before
when doing multiple linear regression

2 Characterizing a linear regression model

2.1 Summarizing discussed forms of linear regression
models

With X, Y and f representing covariates, observations and parameters/weights, any
regression model that can be expressed in the form:

Y=Xp+e, €~ N(Q,c*I) (5)

is a linear model with an estimate of f : ﬂA = (XTX)"!XTY. Assuming n to be the number
of samples, here Y € R", X € R+ p e R®*D 52 € R* and I is an n-dimensional
identity matrix. Please note that the residual vector: e}, e,, e3, e4]T discussed in the
experiments at the beginning of this notebook is just a realization of € in this general model
formulation.
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Hence, all the models discussed above belong to the general family of Linear Regi

with separate definitions for X, Y and f as shown in the below mentioned cases.

Please note X matrix formulated for fitting a regression model is generally referred to :

1. Case 1: n 1-dimensional (univariate) samples and fitting a straight line model.

Here p = 1.

Y =

Herep=m.

Y =

1
»

L Vn

9

N1
A %)

L Vn

X =

y = Po + Prsin(x) + frcos(x)

Y =

Here p = 2.

Y1
»

[ Vn |

2

X =

9

1

1
1

y =P+ bhixi + Phxot...+Paxq

Y =

1
)

.
2

Here p = d.

L Vn |

X =

1

1
X =

1

X1 x%
X2 x%
Xn X%

Sin(xl)
Sin(xz)

X1

X2

Xn |

_i Sin.(xn) Cosi(xn)_

X11 X12
X21 X22
Xn1 Xn2

;P

. Case 2: n 1-dimensional (univariate) samples and fitting
y=PFo+ bix+ pox*+... +f,x"

Case 3: n 1-dimensional (univariate) samples and fitting

Cos(x;) |
Cos(xy)

Case 4: n d-dimensional (multivariate) samples and fitting

X1d

X2d

_|ho

|

Po
b

| fm |

2.2 What makes these regression models linear
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Hence, for a regression model to be linear, following conditions should be satisfied:

1. Linearity: Y and X should be related linearly. One good way to check it is that the
model should have the ability to be expressed as a matrix vector product with
coeffcients () separable from covariate matrix X.

2. Homoscedasticity: The variance of residual is the same for any value of X.

3. Independence: Observations are indendent of each other.

4. Normality: For any fixed value of X, Y is normally distributed.

Please note: For the assumed model definiton in (5) (mentioned below as well) all 4
requirements for a linear regression model are satisfied:

Y=Xp+e, €~ N(Q,c*I)

1. The product X f ensures 1 is satisfied (linearity)
2. Error term € being additive to X 8 with a distribution N (0, 62 1) gurantees (2), (3) and (4)

2.3 Non-linear regression models

All the models that don't satisfy the linear model specific conditions are a kind of a non-
linear regression model. For example Neural Network models. These models dont have

closed form expressions for parameters/weigths (iike # = (X7 X)~' XY for linear models)

Exercise

1. Generate data from f(x) = Sin(x) + log(x) for x € [0, 10]
2. Find the weights ﬁA for fitting 4 separate models:

o y=fo+ pi1Sin(x)
o y=fo+ piCos(x),
o y= o+ piSin(x) + frlog(x)
o y= o+ piCos(x) + prlog(x)

3. Predict f(x) for x = 5.7, using the learnt weights ﬁA for each model separately.

In [ ]:
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